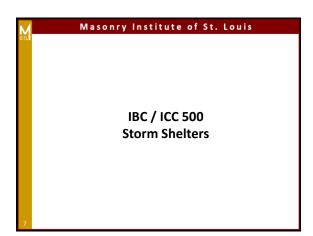

Presentation Outline...


- IBC / ICC 500 Storm Shelters (Tornado)
- Concrete Masonry Storm Shelters
- 3D Modeling and Budget Collaboration
- Wrap-up & Discussion

ICC 500 - 2014

Second Edition – 2014

Complying Structures are

- "Storm Shelters

Masonry Institute of St. Louis **FEMA P-361** Federal Emergency Management Agency (FEMA) Recommended criteria and best practices, but not Code Publication Sequence: Safe Rooms for Tornadoes First Edition – July, 2000 and Hurricanes · Second Edition-August, 2008 Third Edition – March, 2015 S FEMA P-361 will continue to be published in response to ICC 500 updates and Complying Structures are on-going tornado investigations "Safe Rooms"

Masonry Institute of St. Louis ICC 500 vs FEMA 361 FEMA SAFE ROO FEMA P-361 Table A1-1 BEST AVAILABL ICC 500 STO SHELTER igned to minimum building code requirements Maybe Yes aluated by a registered design professional and entified as least vulnerable area/room in building Designed specifically to provide life-safety protecti per ICC 500 Yes Yes esigned specifically to provide near- absolut otection per FEMA P-361 criteria (including perational and emergency planning criteria) Yes

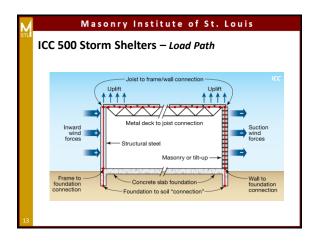
FEMA SAFE ROOM GRANT REQUIREMENT

Whenever a safe room is constructed using FEMA grant funds, the FEMA P-361 Recommended Criteria become requirements in addition to the requirements of ICC 500.

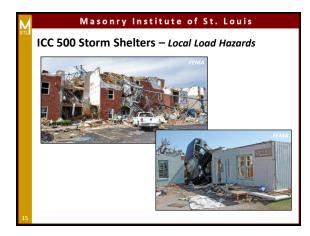
Masonry Institute of St. Louis

IBC Storm Shelter Requirements

- 2009 and 2012 IBC references ICC 500-2008
- 2015 IBC references ICC 500-2014
- Prior to 2015 IBC:
- · Storm shelters not required
 - If designed/constructed they must comply with ICC 500
- 2015 IBC: ICC 500 storm shelters required for the following if located in the 250 mph tornado wind speed zone:
 - K-12 school buildings with occupant load > 50
 - 911 call stations
 - · Fire, rescue, ambulance, and police stations
 - Emergency operations centers


Masonry Institute of St. Louis

IBC Storm Shelter Requirements

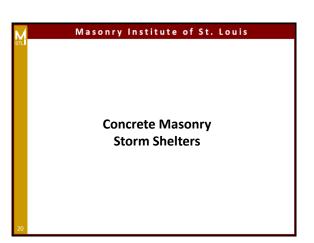

- 2015 IBC Storm Shelter Exceptions for K-12
 - Day Care Centers
 - · Accessory to religious worship facilities
 - · Buildings that meet ICC 500 criteria

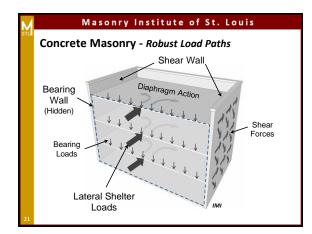
ICC 500 Storm Shelters

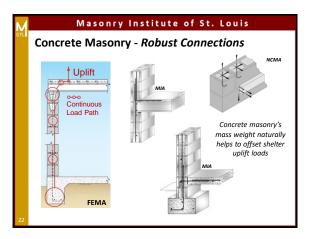
- Loads significantly greater than normal structures
 - Load Path Critical (structural members and connections)
 - · High wind lateral and uplift loads
 - · Missile loads (debris impact)

ICC 500 Storm Shelters – Internal Pressures

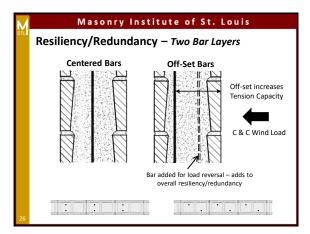
- Factor GC_{pi} = 0.18 for "enclosed building" but...
 Design must account for Atmospheric Pressure Change (APC) by providing venting of 1.0 SF / 1,000 CF
 - Design must follow ICC 500 criteria for type and location
- GC_{pi} = 0.55
 When no APC venting provided or APC venting area not calculated
- Factor of 3 increase on internal pressures

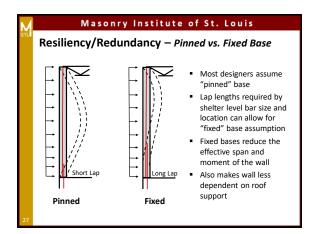


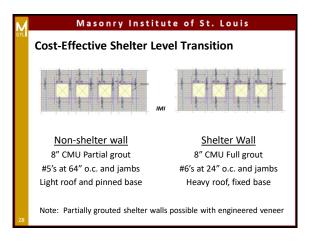



ICC 500 Storm Shelters - Peer Review

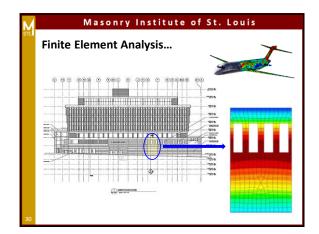
- Compliance Review
 - Professional peer review required for:
 - All shelters with occupancies > 50
 - Shelters for elementary/secondary schools and day care facilities (?) with occupancies > 16
 - Risk Category IV shelters (essential facilities)
 - Signed and sealed report to be submitted to Authority Having Jurisdiction prior to the issuance of a permit for constructing

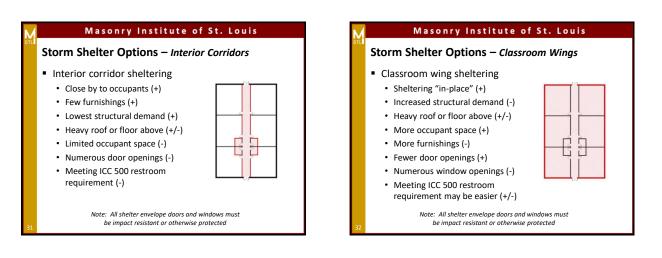



Masonry Institute of St. Louis


Resiliency/Redundancy

- Recent Texas Tech missile testing shows that CMU behind anchored brick veneer may be ungrouted
 - TMS 402 standard anchored veneer provisions must be checked/altered for shelter level wind loads
 - Tested: 8" CMU partially grouted, reinforced 24" o/c, modular clay brick veneer anchored 16" o/c each way to joint reinforcement, 2" cavity
 - Tested: 8" CMU partially grouted, reinforced 32" o/c, utility clay brick veneer anchored 16" o/c each way to joint reinforcement, 2" cavity
 - Both systems passed ICC 500 missile load criteria





Storm Shelter Options - Classroom Wings

- Example Design
 - · 12' wall height
 - 8" CMU fully grouted
 - f'_m = 2,000 psi
 - #6 bar each jamb
 - #6 24"o/c elsewhere
 - Fixed base (40" lap)
 - Joint reinforcement 16" o/c
 - Full internal pressure

Example for illustration purposes, not for construction

Masonry Institute of St. Louis

Storm Shelter Options – Gymnasiums

- Gymnasium Sheltering
 - Familiar location (+)
 - Sheltering "in-place" (-)
 - Highest structural demand (-)
 - Heavy roof or floor above (+/-)
 - Good occupant space (+)
 - Few furnishings (+)
 - Few door openings (+)
 - Few window openings (+)
 - Locker rooms may provide ICC 500 restroom requirement if within shelter envelope (+/-)

Note: All shelter envelope doors and windows must be impact resistant or otherwise protected

Masonry Institute of St. Louis

Storm Shelter Options – Gymnasiums

- Example Design
 - 26' 8" wall height
 - 12" CMU fully grouted
 - *f'_m* = 3,000 psi
 - 2 #6 bars 8" o/c
 - Pinned base (40" lap)
 - Joint reinforcement 16" o/c
 - Full internal pressure

Example for illustration purposes, not for construction

Masonry Institute of St. Louis

Storm Shelter Options – Restrooms

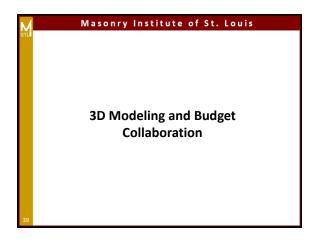
Restroom sheltering

- Probably not an option for ICC 500
- Make a lot of sense for providing "best available refuge" areas
- Especially with baffled entries as used at airports, etc.
- Concrete masonry a great option since often used for restroom construction already

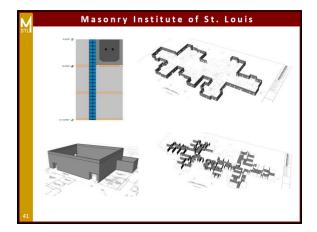
ICC 500 Required Inspections / Observations

- Special inspections highly stressed for ICC 500 storm shelters as part of required overall quality assurance plan
- ICC 500 special inspections based on IBC Chapter 17
- Structural systems, including masonry, are required to be specially inspected already...although frequency of inspections may increase for storm shelters
- ICC 500 places emphasis on "post-installed" anchors
 - Important since post-install anchor materials and design is generally not covered by the IBC or material standards including TMS 402
 - · For masonry, post-installed means installed after grouting
- IBC "structural observations" of structural systems by registered professional kick in for storm shelters due to high wind loads

Masonry Institute of St. Louis


Credentialed Storm Shelter Installer (CSSI)

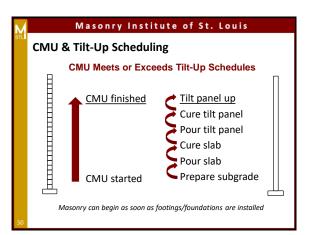
- Mason Contractor Association of America (MCAA) certification program for masonry storm shelter installers
- Program is broken down into five different topic areas:
 - Introduction and Background
 - Anchoring Dowels


• Connections

- Reinforcing and Grouting
- Quality Control and Assurance
- Topics specifically designed for the installer and cover every facet critical to the successful installation of a storm shelter

Budgetary Collaboration

- Real-time market budget numbers
- Alternate comparisons
 - · Masonry to masonry
 - · Masonry to other systems



- Loadbearing CMU Compared То...
 - Precast Concrete
 - Tilt-Up Concrete

М	Masonry Institute of St. Louis
STL	CMU – Precast – Tilt-Up Summary
	 Head to Head Comparison
	• 8" CMU \$12.79/SF
	Precast Concrete \$31.56/SF
	• 7 ½"Tilt-Up Concrete \$15.98/SF
	 Floor Slab Considerations (Tilt-up)
	Floor slab MEP obstructions
	Additional cost of 6" vs. 4" slab
	(+ \$2.28/SF of wall, 100' x 200' x 20' Tall Building)
	Source: 2016 Means Concrete and Masonry Cost Data

M	Masonry Institute of St. Louis	
STL		L
		L
		L
		L
		L
	Wrap Up and Discussion	L
		L
		L
		L
		L
51		

Concrete Masonry Storm Shelters

- Provide the necessary strength and flexibility for various shelter sizes, wall heights and configurations
- Cost-effective shelter level transition
 - Built-in system resiliency/redundancy
 - Tight system tolerances
 - Single and double bar layers per cell options
 - Code updated system strength (*f'm*)
 - Veneer can be an integral part of structural solution
- Readily available local materials and labor

Masonry Institute of St. Louis

Concrete Masonry Storm Shelters

- Inherent Envelope Attributes
 - Familiar aesthetic
 - Durability
 - Sustainability
 - Energy conservation
 - Moisture resistance
 - Sound resistance
 - Fire resistance

Masonry Institute of St. Louis

Presentation Outline...

- IBC / ICC 500 Storm Shelters (Tornado)
- Concrete Masonry Storm Shelters
- 3D Modeling and Budget Collaboration
- Wrap-up & Discussion

Thank You for your time!